Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 106(12): 2391-2399, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34713942

RESUMO

NEW FINDINGS: What is the central question of this study? Giot1, the gene for gonadotropin inducible ovarian transcription factor 1 (GIOT1), is upregulated in osmotically challenged rats: does Giot1 gene expression in the paraventricular nucleus have a role in controlling fluid intake following dehydration and what is the role of ovarian hormones in the modulation of GIOT1 actions? What is the main finding and its importance? GIOT1 acts to regulate water and salt intake as well as hormone secretion after dehydration. The identification of genes that participate in the hormone and behavioural responses involved with hydromineral homeostasis is essential for future exploration of novel drug targets for the treatment of metabolic disease. ABSTRACT: In order to maintain body fluid balance after dehydration, hypothalamic neurons of the paraventricular nucleus (PVN) are activated to promote secretion of vasopressin (AVP) and oxytocin (OXT) from the neurohypophysis, and to modulate the behavioural allostatic responses of thirst and salt appetite. Gonadotropin inducible transcription factor (GIOT1) is a Krüppel-type zinc finger protein induced by gonadotropins and oestradiol (E2). This transcription factor is expressed in the hypothalamus, specifically in the PVN where expression of Giot1 mRNA increases following hydromineral challenges such as water deprivation or salt loading, although its physiological role is not clear. We hypothesize that GIOT1 has a central role in the integrated homeostatic and allostatic responses to disturbances in hydromineral balance, especially in the presence of female gonadal hormones. Female rats with intact ovaries or ovariectomized rats were subjected to specific microinjection of a lentiviral vector mediating Giot1 knockdown in the PVN. Three weeks after injection, rats were subjected to 48 h water deprivation, and thereafter water and salt intake were evaluated. Giot1 knockdown in PVN reduced water and saline intake as well as AVP and OXT secretion. Furthermore, Giot1 knockdown had profound effects on gene expression in the PVN, reducing the abundance of transcripts encoded by the Avp, Oxt, Nr4a1 and Crh genes. In conclusion, the present study shows for the first time that GIOT1 in the PVN regulates both transcription and fluid intake, although any connection to ovarian hormones remains to be established.


Assuntos
Desidratação , Núcleo Hipotalâmico Paraventricular , Animais , Arginina Vasopressina/metabolismo , Ingestão de Líquidos , Feminino , Gonadotropinas/metabolismo , Gonadotropinas/farmacologia , Ovário/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Fatores de Transcrição
2.
Physiol Rep ; 8(20): e14597, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075214

RESUMO

Aging affects the body composition and balance of energy metabolism. Here, we collected in a single work several physiological parameters to show how aging and sex differences can influence energy homeostasis. Body mass index (BMI), Lee index, glucose tolerance, glycemia, and lipidogram in fasting were measured in male and female Wistar rats at the ages of 2, 6, 9, 12, and 18 months. We also measured the lipid profile, free fatty acids, glycerol, glycemia, leptin, adiponectin, insulin, corticosterone (CORT), prolactin (PRL), thyroid stimulated hormone, and triiodothyronine (T3) in 3- and 18-month-old rats of both sexes, fed ad libitum. Animals were classified as obese beginning at 2 months in males and 6 months in females. Aged male rats showed hyperglycemia and glucose intolerance compared to young males and old females. In the ad libitum condition, the 18-month males presented higher serum levels of triglycerides, total cholesterol, and free fatty acids than females. The 18-month-old females had higher PRL and CORT concentration than males, but insulin and T3 were higher in 18-month-old males than females. Our work demonstrated that aging processes on energy metabolism in rats is sex specific, with a better lipid profile and glucose tolerance in aged females.


Assuntos
Envelhecimento/fisiologia , Composição Corporal , Metabolismo Energético , Hormônios Peptídicos/metabolismo , Caracteres Sexuais , Envelhecimento/metabolismo , Animais , Feminino , Glucose/metabolismo , Homeostase , Metabolismo dos Lipídeos , Masculino , Ratos , Ratos Wistar
3.
Am J Physiol Regul Integr Comp Physiol ; 318(3): R567-R578, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31967852

RESUMO

Maintenance of the volume and osmolality of body fluids is important, and the adaptive responses recruited to protect against osmotic stress are crucial for survival. The objective of this work was to compare the responses that occur in aging male and female rats during water deprivation. For this purpose, groups of male and female Wistar rats aged 3 mo (adults) or 18 mo (old) were submitted to water deprivation (WD) for 48 h. The water and sodium (0.15 M NaCl) intake, plasma concentrations of oxytocin (OT), arginine vasopressin (AVP), corticosterone (CORT), atrial natriuretic peptide (ANP), and angiotensin II (ANG II) were determined in hydrated and water-deprived animals. In response to WD, old male and female rats drank less water and saline than adults, and both adult and old females drank more water and saline than respective males. Dehydrated old animals displayed lower ANG II plasma concentration and CORT response compared with the respective normohydrated rats. Dehydrated adult males had higher plasma ANP and AVP as well as lower CORT concentrations than dehydrated adult females. Moreover, plasma OT and CORT levels of old female rats were higher than those in the dehydrated old male rats. Relative expression of ANG II type 1 receptor mRNA was decreased in the subfornical organ of adult and old male rats as well as adult female rats in response to WD. In conclusion, the study elucidated the effect of sex and age on responses induced by WD, altering the degree of dehydration induced by 48 h of WD.


Assuntos
Fatores Etários , Comportamento Animal/fisiologia , Desidratação/fisiopatologia , Fatores Sexuais , Privação de Água/fisiologia , Animais , Arginina Vasopressina/metabolismo , Ingestão de Líquidos/efeitos dos fármacos , Feminino , Masculino , Ratos Wistar , Cloreto de Sódio/farmacologia , Órgão Subfornical/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...